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Distortion behavior of blade castings in heat treatment process determines their geometrical accuracy, and
improper control of it may result in additional repair, shape righting, or even rejection. This article presents
a novel approach for discovering the distortion behavior of heavy blade castings during heat treatment
process in production. Real-time measurements of distortion and temperature field of a heavy hydro
turbine blade casting weighted 17 ton during forced air cooling in normalizing treatment process were
carried out by using deformation measurement instruments and an infrared thermal imaging camera. The
distortion processes of the typical locations of blade and the temperature field of the blade were obtained.
One corner on the blade outlet edge side exhibits variation of distortion with two peaks and a valley. The
range reaches 97 mm and the final distortion value is 76 mm. The maximum temperature difference on
blade surface reaches 460 °C after 80 min of cooling. Influences of thermal stress and phase transformation
stress on the distortion of the blade were elucidated and discussed. The results are of great significance for

the understanding and control of the distortion behavior of hydro turbine blades in heat treatment.

Keywords distortion, hydro turbine blade casting, martensitic
stainless steel, normalizing, real-time measurement

1. Introduction

Heavy steel castings are key components widely used in
power plants, metallurgical industries, etc. Deformation and
defects might appear in castings in production because of
thermal stress, transformation stress, etc., especially in blade
castings with complex structure and significant cross-section
difference (Ref 1). Once severe deformation or crack appears,
some additional repair and shape righting are needed, even they
might be rejected.

Blade is one of the main components of hydro turbines,
whose quality determinates the efficiency, contribution, cavi-
tation performance, and service life of turbine units. Owing to
huge requirement of turbine blades in market, discovering and
controlling the distortion behavior of blades during casting and
heat treatment processes are of long-term significances and
industrial application values. Casting technologies for blades
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have been given universal attentions by countries (Ref 2). The
casting process of a turbine blade in Three Gorges Project was
studied by Wu (Ref 3), and the fluid field in filling process,
temperature, and stress fields during solidification were
obtained by using the numerical simulation method. The
thermal stress analysis of a blade during casting was also
simulated by Li and Wang (Ref 4), and some technical ways
were proposed for improvement of the geometrical accuracy of
blade castings. A FDM/FEM system was used to simulate the
stress field and the distortion behavior of a hydro turbine blade
casting by Liu et al. (Ref 5), and results show large residual
distortion with more than 60.9 mm at one corner of the blade.
The deformation behavior of a heavy hydro turbine blade
casting in casting process was simulated using the FDM/FEM
system by Zhang et al. (Ref 6), and a loop method was
employed to calculate the inverse deformation. The thermome-
chanical behavior of a propeller casting in sand casting process
was simulated using the finite element method by Lee and Lee
(Ref 7), and the effect of shake-out time and shake-out method
on the deformation of the propeller casting was investigated,
and sequential shake-out method was more efficient than
simultaneous shake-out method for the control of the distortion
of the propeller casting. A thermo-mechanical-metallurgical
model of both forging and cooling stages was developed by
Bruschi and Ghiotti (Ref 8), which was used in simulation of
geometrical distortions of hot forged turbine blades. Mean-
while, the reverse methodology of adjusting featured parame-
ters were employed for the design and optimization of casting
and heat treatment processes based on numerical results (Ref 6,
9). Numerical methods were used for analyzing temperature
field, stress field, deformation, etc., of castings in casting and
heat treatment processes, and some interesting results were
obtained. However, the boundary conditions are difficultly
determined in normalizing treatment process of blades, e.g., the
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thermal conductivity coefficient on blade surface when using
forced air cooling. Hence, accurately predicting the distortion
behavior of blades only using numerical methods is very
difficult. Meanwhile, knowledge of the distortion behavior of
heavy blade castings in normalizing treatment process by
experimental methods has not yet been obtained before.

The ZGOCr13Ni4Mo alloy is a kind of martensitic stainless
steel, which is widely used in hydro, steam, and gas turbines for
its special performances during casting, forging, welding,
mechanical working, anti-corroding, etc. (Ref 10, 11). The as-
cast microstructure of blade is of high hardness, poor plasticity,
and high residual stress. Heat treatment must be carried out
before putting into application. In normalizing treatment
process, the distortion at blade corner often occurs for thermal
stress and transformation stress. The control of the distortion
behavior of blades is helpful for the reduction of machining
allowance, and the improvement of material utilization finally.
In this article, the authors present a novel approach for real-time
measurement of the distortion of blade casting during forced air
cooling by using deformation measurement instruments. And
the temperature field of blade was measured by means of an
infrared thermal imaging camera. Influences of the thermal
stress and the transformation stress on the distortion process
were also analyzed.

2. Experimental

The distortion and temperature fields of a hydro turbine
blade casting in normalizing treatment process were measured
in an electric machinery company. The blade is fixed in the slot
of cluster cradles. The Flir T250 thermal imaging camera is
employed for real-time measuring the temperature field, whose

Thermal imaging camera

Blade
Fan

Cradle

Computer

Fig. 1 Testing temperature field of blade by using the Flir T250
thermal imaging camera

error is 2 °C, as shown in Fig. 1. A kind of deformation
measurement instrument is employed for real-time testing the
distortion behavior, whose error is 2 mm. The distortion
behavior at both Spl and Sp2 was measured, as shown in
Fig. 2. The Spl locates at the blade corner in the outlet edge,
whose distortion from the front direction and the back direction
are measured, respectively. The Sp2 locates at the blade corner
in the inlet edge. The forced air cooling is employed in the
normalizing process, and the exit air speed is about 10 m/s.

The maximum boundary dimensions of blade is
4720 x 3340 x 200 mm, and the blade thickness from the inlet
edge to the outlet edge are 200-40 mm. The gross weight of a
blade without riser is 17 ton. The material of blade is
ZGO0Cr13Ni4Mo, whose main chemical components are shown
in Table 1.

3. Results and Discussion

Figure 3(a) shows the distortion at Sp1 after tapping off the
furnace, where the positive value means that the distortion
direction is along the front direction measured from the blade
front side or along the back direction measured form the blade
back side (The directions are shown in Fig. 2). In the figure, the
distortion at Spl from the front direction is in good comple-
mentary with that from the back direction, which means the
experimental results are dependable and the method for
measuring the distortion of blade demonstrates practicability.
Two peaks and a valley appear in the blade distortion process.
The first peak appears after 80 min of cooling, the valley
appears after 200-220 min of cooling, and the second peak
appears after 500-520 min of cooling. Figure 3(b) shows the
distortion at Sp2 measured from the blade front side. In the
figure, the maximum distortion is about 20 mm, and the final
distortion is less than 10 mm. Compared the distortion at Sp2
with that at Spl, the distortion at Sp2 could be neglected.
Hence, the distortion at Spl could reflect the maximum
distortion of blade. For analytical convenience, only the

Sp1
Front surface

Back surface

Inlet edge
Sp2

- "_ -
Front directoin

Back direction

Fig. 2 Testing distortion of the blade during forced air cooling

Table 1 Main chemical components of ZG0Cr13Ni4Mo (mass%)

C Si Mn P S

Ni Cr Mo Cu

0.03 0.46 0.52-0.55 0.011

0.012-0.025

4.25 13.46-13.61 0.60-0.65 0.08-0.09
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Fig. 3 Distortion of blade at Spl (a) and Sp2 (b) during air forced
cooling in normalizing process

distortion at Sp1 measured from the front surface was analyzed
in the following.

Figure 4 shows the temperature field of blade at different
stages. The tapping furnace is 1020 °C, and the maximum
temperature drops to 920 °C after about a minute of tapping
operation time. After cooling 80 min, the maximum tempera-
ture drops to 640 °C. After 220 min of cooling, the maximum
temperature drops to 475 °C, and the maximum temperature
drops to 285 °C after 510 min of cooling, and the cooling
speed is low in this period.

In the forced air cooling process, the maximum temperature
was employed to control the cooling time that the forced air
cooling could be closed when it is lower than the end
temperature of martensite. In Fig. 4, the maximum temperature
generally appears in the zone near the inlet edge and the cradle.
Figure 5 summarizes the cooling curves of the maximum
temperature and the temperature at Spl. At Spl, the temper-
ature is 276 °C after 47 min of cooling, and it drops to 167 °C
after 80 min of cooling that the temperature drop is 830 °C, the
temperature is 80 °C after 220 min of cooling and the speed of
temperature drop gradually decreases in following, and 50 °C
for after 325 min of cooling, and 33 °C for after 510 min of
cooling which closes to the ambient temperature. After 530 min
of cooling, the maximum temperature on blade reaches 276 °C.
In the following, the temperature at Spl is considered as the
minimum temperature.
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During forced air cooling process, the shrinkage deforma-
tion of blade is generally non-uniform because of the temper-
ature difference in blade caused by the disparity of wall
thickness and the different boundary heat transfer conditions,
which results in great thermal stress in the blade. Simulta-
neously, the martensitic transformation begins in different
zones at different time on account of the uneven temperature
distribution, which results in large transformation stress in
blade. Therefore, the distortion might appear in blades under
the action of thermal stress and transformation stress, which is
an assembling of volume change and shape distortion. The total
strain consists of thermal strain, elastic strain, classical plastic
strain, transformation strain, and transformation plasticity
strain, as shown in Eq 1 (Ref 12-14).

& = € +&5+8 +& +g, (Eq 1)
where

= o(T,E)ATS; (Eq 2)

1 _

¢ = — 1+ (T,8) ) o5 — 8;9(T, €)Om Eq 3
St é)[( V(T.8))oy - 8M(T.E)on|  (Eq3)
C ij — Os T?é
& = %TO(@) (Eq 4)
g; = B(T)EYy (Eq 5)
ey = Kg(2 - &)oy (Eq 6)

where g is total strain, gh i is thermal strain, 8 is elastic straln
z—: is classical plastic strain, €& ;s transformatlon strain, 8 is
transformation plasticity strain, §; is Kronecker delta, T is
temperature, & is volume fraction of a phase (in the article, it
is the volume fraction of martensite), a(7, &) is coefficient of
equivalent thermal expansion, E(T,&) is equivalent elastic
modulus of material with mixed phases, v(7,&) is equivalent
Poisson’s ratio of material with mixed phases, o is compo-
nent of stress, Gy, is hydrostatic stress, o,(7, &) is initial yield
stress, Hp(T,&) is plastic modulus, B(7) is coefficient of
phase transformation expansion, and K is coefficient of trans-
formation plasticity.

During forced air cooling process of the ZGOCr13Ni4Mo
martensitic stainless steel, the austenite directly transfers into
the martensite (Ref 15, 16), and the martensitic transformation
beginning point (Ms point) is 276 °C (Ref 14). Figure 6 shows
distortion, distortion velocity, temperature difference, cooling
rate in blade during cooling, which is divided into A1-A5
periods. In the following, the main influencing factors and the
stress distribution in different periods on the distortion of blade
are analyzed. The equivalent stress distributions in blade at
different time are obtained through the finite element analysis,
as shown in Fig. 7, which could shows the possible deforma-
tion regions in normalizing process. In the FE model, the
Young’s modulus, deformation resistance, tangent modulus are
related to the temperature, strain rate, etc., which are obtained
in Ref 17; the transformation plasticity is set as 8.74 x 107>/
MPa (Ref 14); and the heat transfer coefficients, the coefficient
of thermal expansion are obtained in Ref 14.

In Fig. 5, the minimum temperature of blade is higher than
Ms point before 47 min of cooling. Hence, only e, €5, and 8

l’l7

occur in the period, and z—: " plays a dominant role in the dlstortlon

Volume 21(1) January 2012—57



900C
840.0 -
770.0 -
700.0 -
630.0 -
560.0 -
490.0 -
420.0-
350.0 -
280.0 -

210.0-
200.0C

(a)

452.1C
450.0 -

400.0 -
350.0 -
300.0-
250.0 -
200.0-
150.0 -

100.0 -

50.0 -
319TC

(c)

652.5TC
630.0 -
560.0 -
490.0 -
420.0-
350.0 -
280.0-
210.0-
140.0-

70.0 -
2000C

(b)

3376 C

320.0-
288.0-
256.0 -

224.0-

192.0-
160.0 -
128.0-
96.0 -
64.0 -
32.0-

23.0TC

(d)

Fig. 4 Temperature fields of the blade after 1 min (a), 80 min (b), 220 min (c), and 510 min (d) of cooling
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Fig. 5 Cooling curves during air forced cooling

process. Given that the blade microstructure is only austenite
whose deformation resistance is small, the distortion is suscep-
tible to occur under the action of small stress station. Figure 2

58—Volume 21(1) January 2012

shows the arrangement of blades and fans. The back side of the
blade faces the wind blowing, so the temperature drop on the
back surface is greater than that of the front surface, according to
Eq 2, eg‘ > S}P, where ag‘ for ag‘ of back surface, 8}? is 82? of front
surface. Hence, the distortion direction at blade corner is along
the front direction in the period. Owing to £ > &l tensile stress
will appear in the front side, which gradually increases with
increasing the difference between £ and £l Figure 7(b) shows
the equivalent stress distribution after 30 min of cooling. The
stress near blade corner in front side is greater than that in back
side. The tensile stress will result in & and & ( & might be
zero) for counteracting the 82—‘, so the distortion velocity
gradually decreases. In Fig. 6(b), the distortion velocity at Spl
reaches 1.5 mm/min when the blade is tapped off the furnace,
which gradually decreases in the Al period.

The temperature difference in blade gradually increases until
80 min of cooling, which reaches the maximum temperature
difference of 470 °C, as shown in Fig. 6(c). At the time, the
first peak of distortion appears, as shown in Fig. 6A2. With
increasing the temperature difference, the stress in blade
increases, but the difference of the stress distribution between
the blade front and the blade back decreases, as shown in
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Fig. 7 FE meshing of blade (a) and stress distribution (MPa) in
blade after 30 min (b), 60 min (c), 150 min (d), 300 min (e), and
600 min (f) of cooling

Fig. 7(c). In this period, the martensitic transformation begins
at the edge of blade. As the temperature at the blade back is
lower than that at the blade front, so, the transformation
deformation in blade back will be greater than that at the blade
front. Meanwhile, the martensitic transformation is expansive,
which results in the blade distortion in the direction contrary to
that caused by SU However, the transformation deformation
only occurs in the outlet edge because the temperature in most
regions is still greater than the Ms point, which slightly affects
the distortion of blade. Hence, in this per10d the 8 st111 plays

the dominant role. With increasing Aey, g5, and 8 increase.

Journal of Materials Engineering and Performance

Under the integrated action of 8, , y: y P and &, the distortion
of blade slightly increases along the front dlrectlon but the
distortion velocity is slight which fluctuates about 0 mm/min,
as shown in Fig. 6(b).

The temperature difference in blade gradually decreases after
80 min of cooling, as shown in Fig. 6(c). Meantime, the
temperature difference between the blade front and the blade
back decreases with increasing the distortion of blade along
front direction, so the difference between Ael and Ael
gradually decreases. At the same time, &j; gradually decreases
with decreasing the temperature difference and with increasing
the elastic modulus of material, which results in the blade
deforming along the back direction. The increment of sU will
reduce with increasing the deformation resistance of blade.
However, the phase transformation zone near the outlet edge
gradually increases. After 220 min of cooling, the zone with the
temperature below the Ms point gets larger, where the martens-
itic transformation begins, as shown in Fig. 8(a). In this period,
the transformation deformation at blade back will be greater
than that at blade front, because of the temperature of the blade
back is lower than that of the blade front. With further
decreasing of temperature, the difference between the transfor-
mation deformation at blade back and that at blade front
gradually increases. Figure 7(d) shows the stress distribution in
blade after 150 min of cooling. At the time, the equivalent stress
in blade front is less than that in blade back. In this period, the
distortion behav10r is affected by 81/ €5 &, &, and z-:y , where
the increment of ! increases slightly with low cooling rate, s
and 8 T mainly appear near the blade edge whose influence on the
dlstortlon of blade is slight, and & and el ; play the dominant role
whose direction is along the back dlrectlon. Hence, the direction
of distortion is along the back direction.

When the cooling time exceeds 220 min, the distortion
direction at blade corner is reverted into the front direction, and
the valley of distortion appears. In Fig. 6(b), the distortion
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Fig. 8 Phase transfer zone in blade after cooling 220 min (a), and 510 min (b), where zone A is the austenitic zone and zone B is the martens-

ite transformation zone

velocity along the front direction gradually increases and
maintains a long period. The martensitic transformation in the
blade front is less than that in the blade back in the A3 period.
In the A4 period, the increment of &ff comes to be gradually
greater than the increment of €}, which makes the blade deform
along the front direction. At the time, the deformation
resistance of blade becomes stronger, and the blade back will
bear large compressive stress when the blade deforms along the
front direction. Figure 7(e) shows stress distribution in blade
after 300 min of cooling, and the stress in the central zone of
blade back is larger than that of blade front. The stress might
induce the martensitic transformation plasticity. The transfor-
mation plasticity (Ref 12, 13) is caused by the non-uniform
thermal distribution and phase transformation in heat treatment
process, and the transformation plasticity is irreversible. In
Eq 6, slt-j‘-’ depends on the stress, which makes the blade deform
along the front direction. Meanwhile, sg‘ and g;; still make the
blade deform along the back direction with decreasing the
temperature difference and the temperature. ag-p could be
neglected for the transformation plasticity. Meanwhile, as
shown in Fig. 8, controlling the phase transformation in the
zones of complementary set between “A” in (a) and (b) is very
significant for controlling the distortion of blade.

When the cooling time exceeds 510 min, the phase trans-
formation mainly occurs in the symmetrical regions near the
inlet edge side of blade, as shown in Fig. 8(b). With decreasing
the cooling rate, the effects of the phase transformation and the
thermal deformation on the distortion at blade corner comes to
be very slight. Figure 7(f) shows the stress distribution in blade
after 600 min of cooling, and the stress in the blade is slight.
And with decreasing the temperature and the temperature
difference, there still is slight distortion, as shown in Fig. 6AS5.

In the measured results, the distortion at Sp1 is great. In the
A4 period, the distortion reaches 97 mm. After 660 min of
cooling, the distortion of blade compared with that leaving the
furnace is 76 mm. As described in Sect. 1, the distortion of
blade will severely affect the blade quality and the following
processes. Mastering and controlling the distortion behavior is
the aims in production for reducing the processes of shape
righting, reducing the machining allowance, etc.
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Fig. 9 Schemes for controlling distortion of blade

A hypothesis for controlling the distortion behavior of blade
is proposed for reducing the distortion of blade focusing on the
measured result, as shown in Fig. 9. The control idea at every
period is as follows. (1) Reducing the distortion of blade along
the front direction in the Al and A2 periods. In these periods,
the distortion is mainly caused by 83.1, g7, and &7, which are
affected by the temperature field and the cooling rate. Hence,
only cooling the blade uniformly and reducing the cooling
speed, the distortion of blade could be reduced. (2) Improving
the distortion of blade along the back direction in the A3
period. In this period, the distortion of blade is affected by 83—17
€5, SZP , &, and Sfjp Where, & and ez-p increase with decreasing
the temperature difference. Making the martensitic transforma-
tion in blade back first, and expanding the martensitic zone in
blade back, the distortion of blade will increase along the back
direction with increasing 8}; and 8;}). It is obvious that it will
result in the non-uniform of temperature field and will make
against of controlling blade properties. (3) Reducing the
distortion of blade along the front direction in the A4 period.

In this period, € and sg’ are leading the distortion of blade, and

)
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gl

;j 1s direct ratio to the stress in blade. The martensitic
transformation occurs in most regions in the outlet side.
Through reducing the temperature drop velocity and the stress
in blade, sg’ could be effectively decreased, and then the
distortion of blade along the front direction could be reduced.
(4) For the distortion of blade in the AS period, it is just
affected by the temperature and the temperature difference, and
its influence on the distortion of blade is slight. From the
analysis above, in actual production, the control of the
distortion of blade could be trued through suitable controlling
the cooling speed according to the need of ideal blade shape. It
must be proposed especially that the control of A4 period is of

significance for controlling the distortion of blades.

4. Conclusions

(1) The real-time measurements on the distortion behavior
and the temperature field of a heavy hydro turbine blade
casting during forced air cooling in normalizing treat-
ment process were originally carried out by experimental
methods, which give a way for studying and controlling
the distortion behavior of heavy casting in production.

(2) Two peaks and a valley appear in the distortion process
at blade corner in the outlet edge side during forced air
cooling in normalizing treatment process, and the distor-
tion range reaches 97 mm.

(3) In the experimental setting, the maximum temperature
difference reaches 460 °C after 80 min of cooling
caused by the thickness difference between the inlet and
the outlet edges.

(4) There is large distortion at the blade corner in outlet
edge side from cooling 220 to 510 min for the non-uni-
form distribution of temperature and phase transforma-
tion. Controlling the cooling speed and the phase
transformation at this stage is very important for control-
ling the distortion behavior.
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